Robust hashing for multi-view data: Jointly learning low-rank kernelized similarity consensus and hash functions

نویسندگان

  • Lin Wu
  • Yang Wang
چکیده

Learning hash functions/codes for similarity search over multi-view data is attracting increasing attention, where similar hash codes are assigned to the data objects characterizing consistently neighborhood relationship across views. Traditional methods in this category inherently suffer three limitations: 1) they commonly adopt a two-stage scheme where similarity matrix is first constructed, followed by a subsequent hash function learning; 2) these methods are commonly developed on the assumption that data samples with multiple representations are noise-free,which is not practical in reallife applications; 3) they often incur cumbersome training model caused by the neighborhood graph construction using all N points in the database (O(N)). In this paper, we motivate the problem of jointly and efficiently training the robust hash functions over data objects with multi-feature representations which may be noise corrupted. To achieve both the robustness and training efficiency, we propose an approach to effectively and efficiently learning low-rank kernelized 1 hash functions shared across views. Specifically, we utilize landmark graphs to construct tractable similarity matrices in multi-views to automatically discover neighborhood structure in the data. To learn robust hash functions, a latent low-rank kernel function is used to construct hash functions in order to accommodate linearly inseparable data. In particular, a latent kernelized similarity matrix is recovered by rank minimization on multiple kernel-based similarity matrices. Extensive experiments on realworld multi-view datasets validate the efficacy of our method in the presence of error corruptions. We use kernelized similarity rather than kernel, as it is not a squared symmetric matrix for data-landmark affinity matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressed Image Hashing using Minimum Magnitude CSLBP

Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which i...

متن کامل

Sequential Spectral Learning to Hash with Multiple Representations

Learning to hash involves learning hash functions from a set of images for embedding high-dimensional visual descriptors into a similarity-preserving low-dimensional Hamming space. Most of existing methods resort to a single representation of images, that is, only one type of visual descriptors is used to learn a hash function to assign binary codes to images. However, images are often describe...

متن کامل

SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval

The hashing methods have been widely used for efficient similarity retrieval on large scale image datasets. The traditional hashing methods learn hash functions to generate binary codes from hand-crafted features, which achieve limited accuracy since the hand-crafted features cannot optimally represent the image content and preserve the semantic similarity. Recently, several deep hashing method...

متن کامل

Learning to Hash with Binary Reconstructive Embeddings

Fast retrieval methods are increasingly critical for many large-scale analysis tasks, and there have been several recent methods that attempt to learn hash functions for fast and accurate nearest neighbor searches. In this paper, we develop an algorithm for learning hash functions based on explicitly minimizing the reconstruction error between the original distances and the Hamming distances of...

متن کامل

Parametric Local Multimodal Hashing for Cross-View Similarity Search

Recent years have witnessed the growing popularity of hashing for efficient large-scale similarity search. It has been shown that the hashing quality could be boosted by hash function learning (HFL). In this paper, we study HFL in the context of multimodal data for cross-view similarity search. We present a novel multimodal HFL method, called Parametric Local Multimodal Hashing (PLMH), which le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Image Vision Comput.

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2017